Synthesis Flow of xpipes Components

Federico Angiolini fangiolini@deis.unibo.it DEIS - Universita' di Bologna

in cooperation with Universita' di Cagliari

Establishing a Synthesis Flow

- Aims:
 - Pre- and post-layout verification
 - Clock frequency assessment
 - Area utilization
 - Power characterization
- Currently only fully available on UMC 0.13 µm due to layout info required in the technology library (and unavailable for ST)

Layout Generation Flow

Layout Constraints

- Row utilization was set to 85% (margin for clock & power nets)
- Before final tapeout, when chip is complete, new in-place optimization might be run to trim away any empty area
- Slack violations resulting from P&R can be fixed in-place

xpipes Validation

- On a simple testbench topology with traffic generators:
 - Pre-synthesis SystemC
 - Pre-synthesis Verilog
 - Post-synthesis netlist
 - ✓Layout

Clock and Area Assessment

Max frequency results, on UMC library, for 16-bit switches with 6 output buffer stages:

	Netlist		Layout (85% utilization)	
	Area (mm²)	Frequency (MHz)	Area (mm²)	Frequency (MHz)
4x4 switch	0.050	667	0.059	667
12x12 switch	0.250	495	0.294	495

 Results not comparable to DATE05 (ST library); less area, but 30% less MHz

DATE05 Switch Area Results

Power Modeling Flow

Power Characterization Testbench

Power dissipation was modeled on testbench with continuous traffic stream

Power Assessment

4x4 switch	Dynamic	Leakage	Total
Average	19.38 mW	0.03 mW	19.41 mW
Average %	99.998%	0.002%	100%
Peak	53.75 mW	0.03 mW	53.78 mW

- Not comparable to DATE05 at all
- But luckily way lower than that

DATE05 Switch Power Results

Flit	Output Buffer Stages				
Width	4	16			
4x4 Switches					
16	31.1	62.7			
32	55.5	116.9			
64	104.4	219.3			
128	199.1	430.5			
4x6 Switches					
16	42.8	90.1			
32	79.7	170.8			
64	148.2	334.4			
128	283.2	617.3			
6x4 Switches					
16	35.9	69.1			
32	62.9	123.2			
64	117.2	237.6			
128	223.4	453.5			

Power Breakdown

 Dominant contibution: datapath (input latch + crossbar) and output buffers

Proposed Power Model

- Tests with incoming traffic and when idle
- Model might be:

```
P = f(traffic, config)
where
config = {flitwidth, #inputs,
#outputs, #buffers}
```

Hopefully flow control and arbitration policies should not matter much

Future Work

- Network Interface power models?...
- Lots of additional exploration & optimizations
- Full-custom synthesis of critical blocks
 - crossbar
 - buffers (dual-ported memories)